Chapter

PRINCIPAL COMPONENTS

8.1 Introduction -

A principal component analysis is concerned with explaining the variance~covariance
structure of a set of variables through a few finear combinatians of these variables. Its
general objectives are (1) data reduction and (2) interpretation.

Although p components are required to reproduce the total system variability,
often much of this variability can be accounted for by a smail number & of the prin-
cipal components. If so, there is (almost) as much information in the & components
as there is in the original p variables. The k principal components can then replace
the initial p variables, and the original data set, consisting of » measnrements on
p variables, is reduced to a data set consisting of n measurements on & principal
components.

An analysis of principal components often reveals relationships that were not
previously suspected and thereby allows interpretations that would nat ordinarily
result. A good example of this is provided by the stock market data discussed in
Example 8.5.

Analyses of principal components are more of a means to an end rather than an
end in themselves, because they frequently serve as intermediate steps in much
larger investigations. For example, principal components may be inputs to a multiple
regression (see Chapter 7) or cluster analysis (sce Chapter 12). Moreover, (scaled)
principal components are ane “factoring” of the covariance matrix for the factor
analysis model considered in Chapter 9.

8.2 Popuiation Principal Components
Algebraically, principal components are particular linear combinations of the p ran-

dom variables X;, X3,..., X b Geometrically, these linear combinations represent -
the selection of a new coordinate system abtained by rotating the original system .
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Population Principal Components 431

with X, X,,..., X, as the coordinate axes. The new axes represent the directions
with maximum variability and provide a simpler and more parsimonious description
of the covariance structure.

As we shall see, principal components depend solely on the covariance
matrix ¥ (or the correlation matrix P) of X, X;,..., X,,. Their development does
not require a multivariate normal assumption. On the other hand, principal
components derived for multivariate normal populations have useful interpreta-
tions in terms of the constant density ellipsoids. Further, inferences can be made
from the sample components when the population is multivariate normal. (See
Section 8.5.)

Let the random vector X' = [X), X;,..., X,] have the covariance matrix ¥
with eigenvalues Ay = Ay = --- = A, = 0.

Consider the linear combinations

Y'] = a'1X = ﬂlle + a)2X2 + 0+ alPXp

)/'2 = a'2X = ﬂz]Xl + (lszz + .-+ aZpo
. . (8-1)

Y, = aX = an Xy +a,pXe+ -+ a,,X,

Then, using (2-45), we obtain

Var(Y;) = ajXa, i=1,2,...,p (8-2)
Cov(Y;, Y,) = a2a,; Lk=12,...,p (8-3)
The principal components are those uncorrelated linear combinations Y3, ¥5,..., Y,

whose variances in (8-2) are as large as possible.

The first principal component is the linear combination with maximum
variance. That is, it maximizes Var (¥;) = a}3a,. It is clear that Var (¥;) = aj3a, can
be increased by multiplying any a, by some constant. To eliminate this indeterminacy,
it is convenient to restrict attention to coefficient vectors of unit length. We there-
fore define

First principal component = linear combination a;X that maximizes
Var(ajX) subjectto aja; = 1
Second principal component = linear combination a3 X that maximizes
Var (a3X) subject to aja, = 1and
Cov(a;X, a5X) = 0

At the ith step,

ith principal component = linear combination a; X that maximizes
Var (a; X) subject to a;a; = 1 and
Cov(a;X,a;X) =0 for k<i
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Result 8.1. Let 3 be the covariance matrix associated with the random vector -
X = [XI,X-_,,,A.,XP]. Let X have the eigenvalue-eigenvector pairs (Ahel) ;
(A2, €3),-.-, (Ap, ep) where A} = 4 = -+~ 2 A, = 0. Then the ith principal com’ 2

ponent is given by z
YVi=gX=e1 X teaXo+ - +e,X,, i=12,..p (84) -

.

With these choices,
Var(Y)) =eZe,=4 i=12,...,p
Cov(Y;, Y,) = eYe;, =0 itk (85

Lo d e

N
i

b ik,

If some A; are equal, the choices of the corresponding coefficient vectors, e;, and -
hence Y}, are not unique. L

ot

Proof. We know from (2-51), with B = X, that
maxg,ia = Ay (attained when a = e;)
a0 @§'a

But eje; = 1 since the eigenvectars are normalized. Thus,

a’'Xa ejXe;
max—— = A; = —, — = e3¢, = Var(¥})
a¥0 aa €€

Similarly, using (2-52), we get

max 2R, k=12..p-1

alepe;... e a'a
For the choice a = e, withej, ¢, = 0,fori =1,2,.. kandk = 1,2,...,p — 1,
€f 120 i1 /Chii€kel = €hr12€rry = Var(Yi,;)

But €}, ;(Zes 1) = Apri€ir1€pe1 = Ayl 50 Var(Yiyy) = Ap,y. It remains to show
that e; perpendicular to e, (that is,eje, = 0,i # k) gives Cov(Y;, Y) = 0. Now, the
eigenvectors of ¥, are orthogonal if all the eigenvalues A;, A, ..., A, are distinct. If
the eigenvalues are not all distinct, the eigenvectors corresponding to common
eigenvalues may be chosen to be arthogonal. Therefore, for any two eigenvectors ¢;
and e,, ee, = 0,i # k. Since e, = A.e;, premultiplication by e} gives

Cav(Y,Y,) = ejZe, = e/e, = Ayele, = 0
for any 1 # ., and the proof is complete. -

From Result 8.1, the principal components are uncorrelated and have variances
equal to the eigenvalues of X.

Result 8.2, Let X' = [X), X;,..., X,] have covariance matrix X, with eigenvalue-
eigenvector pairs (4, e;), (A2,€3),-.-, (Ap.€,) where ; = Ay = --- = A, 2 0.
Let ¥} = eiX, ¥, = &X,..., ¥, = ¢,X be the principal components. Then

p
011 + s ) + - +O'pp = i Var(X,») =A1 + A2+ e '\p = E Var(Y,)
i=1 i=1
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Proof. From Definition 2A.28, 611 + 033 + <+ + 0, = tr(X%). From (2-20) with
A = X, we can write ¥ = PAP’ where A is the diagonal matrix of eigenvalues and
P =[e), e;,...,e,] sathat PP’ = P'P = L Using Result 2A.12(c), we have

tr(2) = tr(PAP') = tr(AP'P) = tr{A) = Ay + o + -~ + A,
Thus,

i Var(X;) = tr(X) = tr(A) = i Var(Y;) ]
i=1 i=1

Result 8.2 says that

Total population variance = 013 + 023 + -+ + 0,
A+ A+ 44, (8-6)

and consequently, the proportion of total variance due to (explained by) the kth
principal component is

Proportion of total

population variance | _ Ay _ _
due to kth principal ALt A+t A k=12...p (87)
component

If most (for instance, 80 to 90%) of the total population variance, for large p, can be-
attributed to the first one, two, or three components, then these components can
“replace” the original p variables without much loss of information.

Each component of the coefficient vector e/ = [e;y,..., €, -. -, €] also merits
inspection. The magnitude of e;;, measures the importance of the kth variable to the
ith principal component, irrespective of the other variables. In particular, e;, is pro-
portional to the correlation coefficient between Y; and Xj.

Result 8.3. If Y1 = e1X, ¥, = X,..., ¥, = ¢, X are the principal components
obtained from the covariance matrix ¥, then

eV
Vo
are the correlation coefficients between the components Y; and the variables Xj.
Here (A1, €1), (A2, €3),..., (A,, €,) are the eigenvalue—eigenvector pairs for X.

oY, X, ik=1,2,..,p (8-8)

Proof. Set a; =[0,...,0,1,0,...,0] so that X; = a;X and Cov(X,,Y) =
Cov (a;X, e/X) = a} Xe;, according to (2-45). Since Xe; = Ae;, Cov (X, Y)) = ajAe; =
Aie;. Then Var(Y;) = A [see (8-5)] and Var(X}) = oy yield

COV(Y;, Xk) A,-eik eik\/A_,'

= = = [,k=1,2,...,P [ |
X T N (v) VVar(X,) VA Vo Vou

Although the correlations of the variables with the principal compenents often
help to interpret the components, they measure only the univariate contribution of
an individual X to a component Y. That is, they do not indicate the importance of
an X to a component Y in the presence of the other X’s. For this reason, some



434 Chapter 8 Principal Components

statisticians (see, for example, Rencher [16]) recommend that only the coefficients
e, and not the correlations, be used to interpret the components. Although the co.
efficients and the correlations can lead to different rankings as measures of the jp. -
portance of the variables to a given component, it is our experience that thege -
rankings are often not appreciably different. In practice, variables with relatively -
large coefficients (in absclute value) tend to have relatively large correlations, s
the two measures of importance, the first multivariate and the second univariare, -
frequently give similar results. We recommend that both the coefficients and the
correlations be examined to help interpret the principal components. ’

The following hypothetical example illustrates the contents of Results 8.1, 8.2,
and 8.3.

Example 8.1 (Calculating the population principal components) Suppose the
random variables X, X, and X3 have the covariance matrix

1 =20 -
Y=(-2 50
0 0 2

It may be verified that the eigenvalue—-eigenvector pairs are

A =583 e =[383,-924,0]
A =200, € =][0,0,1]
A3 =017, e = [.924,.383,0]

Therefore, the principal compeonents become
= e]X = 383X; — 94X,
,=eX=X,
Yy = e{X = 924X, + 383X,
The variable X; is one of the principal components, because it is uncorrelated with

the other two variables.
Equation (8-5) can be demonstrated from first principles. For example,

Var(Y]) = Var(.383X, — .924.X,)
= (.383)2 Var (X,) + (—.924)? Var (X3)
+2(.383) (—.924) Cov(X;, X3)
= 147(1) + .854(5) — .708(~2)
=583 = A
Cov(Y;,Y;) = Cov (383X, — 924X;, X3)
.383 Cov (X7, X;3) — 924 Cov(X,, X3)
383(0) ~ .924(0) = 0

1]

)

It is also readily apparent that
oy top+o33=1+5+2=A+2A+ A3 =583 +200+ .17 ﬁ
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validating Equation (8-6) for this example. The proportion of total variance accounted
for by the first principal component is Aj/(A; + A; + A3) = 5.83/8 = .73. Further, the
first two components account for a proportion (5.83 + 2)/8 = .98 of the population
variance. In this case, the components ¥; and ¥, could replace the original three
variables with little loss of information.

Next, using (8-8), we obtain

e VA _ 383V583

= 925
i = Ven Vi

_ennVA _ —.924V583 _ 908
e Vo V5 '

Notice here that the variable X, with coefficient —.924, receives the greatest
weight in the component Y;. It also has the largest correlation (in absolute value)
with ¥7. The correlation of X, with ¥}, .925, is almost as large as that for X;, indi-
cating that the variables are about equally important to the first principal compo-
nent. The relative sizes of the coefficients of X; and X, suggest, however, that X,
contributes more to the determination of ¥, than does X;. Since, in this case, both
coefficients are reasonably large and they have opposite signs, we would argue that
both variables aid in the interpretation of ¥;.

Finally,
Vi, V2
= =0 and = =——=1 (asitshould
PYL X, = PYa X, PY, X, o V2 ( )

The remaining correlations can be neglected, since the third component is
unimportant. . -

It is informative to consider principal components derived from multivariate
normal random variables. Suppose X is distributed as N,(u,%). We know from
(4-7) that the density of X is constant on the u centered ellipsoids

(x —p)2l(x —p) =

which have axes +cVA e, i = 1,2,..., p, where the (A;, ;) are the eigenvalue~
eigenvector pairs of . A point lying on the ith axis of the ellipsoid will have coordi-
nates proportional to €; = [e;, €;5,..-, ¢;,] in the coordinate system that has origin
# and axes that are parallel to the original axes x;, x,. .., x,. It will be convenient
to set u = 0 in the argument that follows.!

From our discussion in Section 2.3 with A = %7, we can write

- 1 1 1
A =xIlx == (ejx)’ + = (esx) + - + — (e,x)’
A X A,

1This can be done without loss of generality because the normal random vector X can always be
translated to the normal random vector W = X — u and E(W) = 0. However, Cov(X) = Cov(W).
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where e[ x, e3x,..., e,x are recognized as the principal components of x. Setting

’

Y1 = eix, y» = €3X,..., y, = e,X, we have

1 1 1
= A—ly? + A—zy% +oot A—p‘yﬁ
and this equation defines an ellipsoid (since Ay, Ay,.. ., A, are positive) in a coord.
nate system with axes y|, »,..., y, lying in the directionsof e, e;, ..., €, respec-
tively. If A is the largest eigenvalue, then the major axis lies in the direction e;. The
remaining minor axes lie in the directions defined by e, ..., e,.

To summarize, the principal components y'= e{x, }, = €3X,..., y, = e,x lie
in the directions of the axes of a constant density ellipsoid. Therefore, any point on
the ith ellipsoid axis has x coordinates proportional to e; = [e;;, €;3,..., ¢ p] and,
necessarily, principal companent coordinates of the form [0,..., 0, ,0,...,0].

When p # 0, it is the mean-centered principal component y; = ej(x — u) that
has mean 0 and lies in the direction e;.

A constant density ellipse and the principal components for a bivariate normal
random vector with g = 0 and p = .75 are shown in Figure 8.1. We see that the
principal components are obtained by rotating the original coordinate axes through
an angle 6 until they coincide with the axes of the constant density ellipse. This result
holds for p > 2 dimensions as well.

%

yi = ex
¥y, = €3%
x' LIk =¢?
6
r‘X,
Figure 8.1 The constant density
ellipse x'%"'x = ¢? and the principal
u=0 companents y;, ¥, for a bivariate
p=.75 normal random vector X having
mean 0.

Principal Components Obtained from Standardized Variables

Principal components may also be obtained for the standardized variables
(X1 — )
Vo
7 = (X2 — )
: V022 (89 .

Z]=

_ (Xp _#‘p)
2=

124
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In matrix notation,
Z=(VAUX - p) (8-10)

where the diagonal standard deviation matrix V2 is defined in (2-35). Clearly,
E(Z) = 0and

Cov(Z) = (V') '5(V?)~ = p

by (2-37). The principal compenents of Z may be abtained from the eigenvectors of
the correlation matrix P of X. All our previous results apply, with some simplifica-
tions, since the variance of each Z; is unity. We shall continue to use the notation ¥;
to refer to the ith principal component and (A;, €;) for the eigenvalue—eigenvectar
pair from either P or %. However, the (A;, ¢;) derived from X, are, in general, not the
same as the ones derived from pP.

Result 8.4. The ith principal component of the standardized variables
Z =[2,,2,,...,Z,) withCov(Z) = p,is given by

Yi=eZ=e(VA ' (X-pn), i=12..,p

Moreover,
p 2
> Var(Y;) = Y Var(Z) = p (8-11)
i=1 =
and
py.z, = exVAh  Lk=1,2,...,p
In this case, (A1, &), (A2, €3),..., (A,, €,) are the eigenvalue—eigenvector pairs for

P,withd; = == 2,20

Proof. Result 8.4 follows from Results 8.1,8.2, and 8.3, with Z;, Z,, ..., Z, in place
ofX],X-_,,...,Xpandpinplaceof}:. -

We see from (8-11) that the total (standardized variables) population variance
is simply p, the sum of the diagonal elements of the matrix p. Using (8-7) with Z in
place of X, we find that the proportion of total variance explained by the kth princi-
pal component of Z is

Proportion of (standardized) A
population variance due =2k k=12,...,p (8-12)
to kth principal component

where the Ay’s are the eigenvalues of p.

Example 8.2 (Principal components obtained from covariance and correlation matrices
are different) Consider the covariance matrix

14
= [4 100]
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and the derived correlation matrix

o=l ]

The eigenvalue-eigenvector pairs from 3 are
A = 10016, e = [.040,.999]
L= 84, e =999, -.040]

Similarly, the eigenvalue-eigenvectar pairs from p are

M=1+p=14 ¢ =][707,.707)
h=1-p= 6  &=][707,-707)
The respective principal components become
Y) = .040X; + 999X,

> Y, = 999X, — 040X,
and |
Y, = 707, + 707Z, = 707 (@j + 707 (ﬁ%)
P = T07(X, - ) + 0707(X; ~ py)
Y, = 7012, = 7072, = 707 (L;’i‘) ~ 707 (XZI;O“Z)

= 707(X) ~ ) = 0707(X; — pa)

Because of its large variance, X, completely dominates the first principal component
determined from 3. Moreaver, this first principal component explains a proportion

A 10016

= =9
A+ A, 101 %2

of the total population variance.

When the variables X; and X, are standardized, however, the resulting
variables contribute equally to the principal camponents determined from p. Using
Result 8.4, we obtain

Py,z, = e11VA, = 707VI4 = 837

and
Py z, = eV = . 707V14 = 837

In this case, the first principal component explains a proportion
A 14

4 2
of the total (standardized) population variance.
Most strikingly, we see that the relative importance of the variables to, for
instance, the first principal component is greatly affected by the standardization.

7
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When the first principal component obtained from p is expressed in terms of X
and X, the relative magnitudes of the weights .707 and .0707 are in direct opposi-
tion to those of the weights .040 and .999 attached to these variables in the principal
component obtained from X. ]

The preceding example demonstrates that the principal components derived
from X are different from those derived from p. Furthermore, one set of principal
components is not a simple function of the other. This suggests that the standardiza-
tion is not inconsequential.

Variables should probably be standardized if they are measured on scales with
widely differing ranges or if the units of measurement are not commensurate. For
example, if X represents annual sales in the $10,000 to $350,000 range and X is the
ratio (net annual income)/(total assets) that falls in the .01 to .60 range, then the
total variation will be due almost exclusively to dollar sales. In this case, we would
expect a single (important) principal component with a heavy weighting of X;.
Alternatively, if both variables are standardized, their subsequent magnitudes will
be of the same order, and X; (or Z;) will play a larger role in the construction of the
principal components. This behavior was observed in Example 8.2.

Principal Components for Covariance Matrices
with Special Structures

There are certain patterned covariance and correlation matrices whose principal
components can be expressed in simple forms. Suppose ¥, is the diagonal matrix

oy 0 - 0
=] ° o 0 (8-13)
0 0 opp

Setting ¢/ = [0,...,0,1,0,..., 0], with 1 in the ith position, we observe that

0 0
on 0 0|, 0
? 0:22 0 1|=]1o;| or Xe = o€
6 0 Opp 0 |
o] Lo

and we conclude that (o;;, €;) is the ith eigenvalue—eigenvector pair. Since the linear
combination e¢; X = Xj, the set of principal components is just the original set of un-
correlated random variables.

For a covariance matrix with the pattern of (8-13), nothing is gained by extracting
the principal components. From another point of view, if X is distributed as N,(x, %),
the contours of constant density are ellipsoids whose axes already lie in the directions
of maximum variation. Consequently, there is no need to rotate the coordinate system.
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Standardization does not substantially alter the situation for the ¥ in (8-13). In
that case, p = I, the p X p identity matrix. Clearly, pe; = le,, so the eigenvalye 1
has multiplicity p and e =[0,...,0,1,0,...,0], i = 1,2,..., p, are convenjept
choices for the eigenvectors. Consequently, the principal components determineg
from P are also the original variables Z1,..., Z,. Moreover, in this case of equal
eigenvalues, the multivariate normal elhpsmd: of constant density are spheroids,

Another patterned covariance matrix, which often describes the correspon-
dence among certain biclogical variables such as the sizes of living things, has the

general form
2 po? e g

o
z=| T (8:14)
po?  po? o2
The resulting correlation matrix
1 p - 0p
p=|" " (®15)
p p o 1

is also the covariance matrix of the standardized variables. The matrix in (8-15)
implies that the variables Xj, X»,..., X, are equally correlated.

It is not difficult to show (see Exercise 85) that the p eigenvalues of the corre-
lation matrix (8-15) can be divided into two groups. When p is positive, the largest is

A =1+(p-1)p (8-16)
with associated eigenvector
1 1 1
1= === 817
=[5 e
The remaining p ~ 1 eigenvalues are
,\2=,\3=...=AP=1 -p

and one chaoice for their eigenvectors is

, 1 1
®2 = [\/17‘\/17 0]

~2
V2 X3 \/2>< 3'V2x3 0]

€ =

el = ’: 1 U 0,... O:l
' Vi-1)i \/(l—-])z \/(l—l)[ T

1 *(P’l)}
V(p- Dp " Vip-1p Vip-1)p
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The first principal component

1
Y1=eiZ=7;EZ,-
=1

is proporticnal to the sum of the p standarized variables. It might be regarded as an
“index” with equal weights. This principal component explains a proportion

M l1+(p-1)p 1-p
M —p+
p p p

(8-18)

of the tatal population variation. We see that A;/p = p for p close to 1 or p large.
For example, if p = .80 and p = 5, the first component explains 84% of the
total variance. When p is near 1, the last p — 1 components collectively con-
tribute very little to the total variance and can often be neglected. In this special
case, retaining only the first principal component ¥; = (1/Vp)[1,1,...,1]X,
a measure of tatal size, still explains the same proportion (8-18) of total
variance.

If the standardized variables Z;, Z,, ..., Z, have a multivariate normal distrib-
ution with a covariance matrix given by (8-15), then the ellipsoids of constant densi-
ty are “cigar shaped,” with the major axis proportional to the first principal
component ¥; = (1/Vp){1,1,...,1]Z. This principal component is the projection
of Z on the equiangular line 1’ = [1,1,..., 1]. The minor axes (and remaining prin-
cipal components) occur in spherically symmetric directions perpendicular to the
major axis (and first principal component).

8.3 Summarizing Sample Variation by Principal Components

We now have the framework necessary to study the problem of summarizing the
variation in n measurements on p variables with a few judiciously chosen linear
combinations.

Suppose the data x;, x5, ..., X, represent n independent drawings from some
p-dimensional population with mean vector g and covariance matrix X. These data
yield the sample mean vector X, the sample covariance matrix S, and the sample cor-
relation matrix R.

Our objective in this section will be to construct uncorrelated linear combina-
tions of the measured characteristics that account for much of the variation in the
sample. The uncorrelated combinations with the largest variances will be called the
sample principal components.

Recall that the n values of any linear combination

a{x = allle + a12x!-2 + -+ A1pXjp, ]= 1,2,...,"

have sample mean ajX and sample variance a;Sa;. Also, the pairs of values
(ajx;, ajx;), for two linear combinations, have sample covariance ajSa; [see
(3-36)].
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3

The sample principal components are defined as those linear combinagj é
which have maximum sample variance. As with the population quantities, WQ;E
strict the coefficient vectors a; to satisfy aja; = 1. Specifically,

First sample linear combination ajx; that maximizes
principal component = the sample variance of a)x; subject
toaja; =1
Second sample linear combination ajx; that maximizes the sample

principal compenent = variance of ajx; subject to aja; = 1 and zero sampl
cavariance for the pairs (ajx;, a3x;)

At the ith step, we have

ith sample linear combination ajx; that maximizes the sample
principal component = variance of ax; subject to a;a; = 1 and zero sample -
covariance for all pairs (ajx;, a;x;), k < i -

s g

'

The first principal compenent maximizes a}Sa, or, equivalently,

e d
#

a;Sa;
f
a3

By (2-51), the maximum is the largest eigenvalue ):1 attained for the choi
a; = eigenvectoré; of S. Successive choices of a; maximize (8-19) subject 114
0 = a)Se, = ajA€;, or a; perpendicular to €. Thus, as in the proofs of Resul;
8.1-8.3, we obtain the followmg results concerning sample principal component

IfS = {s,k} isthep X p sample covariance matrix with eigenvalue- elgenvector:
pairs (11, &), ()t-_,, €),.. (/\ e »)» the ith sample principal component is glven
by

Vi = €X = &xy + pxg + o+ épx,,  i=12,...,p

N A N . =
where A; = A, =---= A, =0 and x is any observation on the variables’
Xl,Xz,, .,XP.AJSO,

Sample variance(y,) = A, k=12,...,p
Sample covariance(y;, ) =0, i # k

In addition,
. P A oA
Total sample variance = Y, s5; = Ay + Ay +++ + 4,

and

r = ——éik\/;i Lk=172 /4
Yo Xk .‘/skk y 4] PR )
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We shall denote the sample principal components by ji, 3, .., y,., irrespective
of whether they are obtained from $ or R.2 The components constructed from S and
R are not the same, in general, but it will be clear from the context which matrix is
being used, and the single notation ¥, is convenient. It is also convenient to label the
component coefficient vectors e; and the component variances A, for both situations.

The observations x; are often “centered” by subtracting X. This has no effect on
the sample covariance matrix S and gives the ith principal compoenent

yi = ej(x — %), i=12,...,p (8-21)
for any observation vector x. If we consider the values of the ith component
yi=e(x;—%X), j=12,...,n (8-22)
generated by substituting each observation x; for the arbitrary x in (8-21), then
= 1 &
y,v=n’§e,(x,—x) =~ (z(x,—x))——e,o—o {8-23)

That is, the sample mean of each principal compenent is zero. The sample variances
are still given by the A;’s, as in (8-20).

Example 8.3 (Summarizing sample variability with two sample principal components)
A census pravided information, by tract, on five sociceconomic variables for the
Madison, Wisconsin, area. The data from 61 tracts are listed in Table 8.5 in the exercises
at the end of this chapter. These data produced the following summary statistics:

¥ = [4.47, 3.96, 71.42, 2691, 1.64]
total professional employed gavernment median
population degree age over 16 employment home value
{thousands) {percent) {percent) {percent) {$100,000)
and

3.397 -1.102 4306 -2.078 0.027

-1102 9673 —1513 10.953 1.203

S = 4306 -—1.513  55.626 —28.937 -0.044
—2.078 10953 -28.937 89.067 0957

0.027 1203 -0.044 0957 0319

Can the sample variation be summarized by one or two principal components?

2Sample principal components also can be obtained from %= S,, the maximum likelihood esti-
mate of the covariance matrix %, if the X, are normally distributed. (See Result 4.11.) In this case,
provided that the eigenvalues of % are distinct, the sample principal components can be viewed as
the maximum likelihood eslimates of the corresponding population counterparts. (See [1].) We shall
not consider 2 because the assumption of non-nahty is not required in this section. Also, % has eigenvalues
[{n - 1)/n]A and corresponding eigenvectors &,, where ( X;, &) are the eigenvalue-eigenvector pairs for
S. Thus, both § and % give the same sample principal components €/x [see (8-20)] and the same propor-
tion of explained variance A J{ Al + Ay + -+ + A,). Finally, both § and 3, give the same sample correla-
tion matrix R, so if the variables are standardized, the choice of § or 3, is irrelevant.
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We find the following:

Coefficients for the Principal Components
(Correlation Coefficients in Parentheses)

Variable . e1(r,,5) & (r5,x) € €4

Total population —0.039(—.22) 0.071(.24)  0.188 0.977
Profession 0.105(.35) 0.130(.26) -0961 0.171
Employment (%) —0.492(—.68) 0.864(.73) 0.046 -0.091
Government . : .

employment (%) 0.863(.95) 0.480(.32) 0.153 -0.030
Medium home

value 0.009(.16) 0.015(.17) -0.125 0.082
Variance (;): 107.02 39.67 837 287
Cumulative

percentage of

total variance 67.7 92.8 981 99.9

The first principal component explains 67.7% of the total sample variance. The
first two principal components, collectively, explain 92.8% of the total sample vari-"
ance. Consequently, sample variation is summarized very well by two principal com-
ponents and a reduction in the data from 61 observations on 5 observations to 6
observations on 2 principal components is reasonable.

Given the foregoing component coefficients, the first principal componen
appears to be essentially a weighted difference between the percent employed b &
government and the percent total employment. The second principal component :
appears to be a weighted sum of the two. m

As we said in our discussion of the population components, the component
coefficients &, and the correlations r;, ,, should both be examined to interpret the
principal components. The correlations allow for differences in the variances of.
the original variables, but only measure the importance of an individual X without
regard to the other X’s making up the component. We notice in Example 83,
however, that the correlation coefficients displayed in the table confirm the
interpretation provided by the component coefficients.

The Number of Principal Components

There is always the question of how many components to retain. There is no defin-
itive answer to this question. Things to consider include the amount of total samplez
variance explained, the relative sizes of the eigenvalues (the variances of the sams;
ple components), and the subject-matter interpretations of the components. In adé
dition, as we discuss later, a component associated with an eigenvalue near ze‘r%
and, hence, deemed unimportant, may indicate an unsuspected linear dependency;
in the data. k
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1 2 3 4 s 6 Figure 8.2 A scree plot.

A useful visual aid to determining an appropriate number of principal
components is a scree plot.> With the eigenvalues ordered from largest to smallest,
a scree plot is a plot of A; versus i—the magnitude of an eigenvalue versus its
number. To determine the appropriate number of components, we look for an
elbow (bend) in the scree plot. The number of components is taken to be the
point at which the remaining eigenvalues are relatively small and all about
the same size. Figure 8.2 shows a scree plot for a situation with six principal
components.

An elbow occurs in the plot in Figure 8.2 at about i = 3. That is, the eigenvalues
after A, are all relatively small and about the same size. In this case, it appears,
without any other evidence, that two (or perhaps three) sample principal compo-
nents effectively summarize the total sample variance.

Example 8.4 (Summarizing sample variability with one sample principal component)
In a study of size and shape relationships for painted turtles, Jolicoeur and Mosi-
mann [11] measured carapace length, width, and height. Their data, reproduced in
Exercise 6.18, Table 6.9, suggest an analysis in terms of logarithms. (Jolicoeur [10]
generally suggests a logarithmic transformation in studies of size-and-shape rela-
tionships.) Perform a principal component analysis.

3Scree is the rock debris at the bottom of a cliff
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The natural logarithms of the dimensions of 24 male turtles have sample meap
vector X' = [4.725, 4.478, 3.703] and covariance matrix

11.072 8019 8160
S =107 8019 6.417 6005
N 8160 6.005 6773

A principal component analysis (see Panel 8.1 on page 447 for the output from
the SAS statistical software package) yields the following summary:

Coefficients for the Principal Components .
(Correlation Coefficients in Parentheses)

Variable ery,.x) & &,

In (length) 683 (.99) -.159 ~.713
In (width) 510(97)  ~59% 622
In (height) 523 (.97) 788 324
Variance (\): 2330 X 10 60 X103 .36 x 1073
Cumulative

percentage of tatal

variance | 96.1 98.5 100

A scree plot is shown in Figure 8.3. The very distinct elbow in this plot accurs
at 7 = 2. There is clearly one dominant principal component.

The first principal component, which explains 96% of the total variance, has an
interesting subject-matter interpretation. Since

$1 = .683 In(length) + 510 In (width) + .523 In (height)
= In[(length)*®(width)~'( height)*?]

A, x 10?

OL L —»; Figure8.3 A scree plot for the
1 2 3 turtle data.
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PANEL 8.1 SAS ANALYSIS FOR EXAMPLE 8.4 USING PROC PRINCOMP.

447

ents

data turtle;
infile ‘E8-4.dat’;
input length width height;

var x1 x2 x3;

title ‘Principal Component Analysis’;

PROGRAM COMMANDS

x1 = fog{length); x2 =log(width); x3 =log{height);
proc princomp cov data = turtle out = result;

Principal Components Analysis

OUTPUT

24 Observations
3 Variables
Simple Statistics
X1 X2 X3
Mean 4.725443647 4.477573765 3.703185794
StD 0.105223590 0.080104466 0.082296771
X1 X2 X3
X1 0.0110720040 0.0080191419 0.0081596480
X2 0.0080191419 0.0064167255 0.0060052707
X3 0.0081596480 0.0060052707 0.0067727585
Total Variance = 0.024261488
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 0.023303 0.022705 0.960508 0.96051
PRIN2 0.000598 0.000238 0.024661 0.98517
PRIN3 0.000360 0.014832 1.00000
Eigenvectors
PRIN1 PRIN2 PRIN3
X1 0.683102 -.159479 ~712697
X2 0.510220 -.594012 0.621953
X3 0522539 . 0.788450 0.324401
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the first principal component may be viewed as the In (volume) of a box with a. - |
justed dimensions. For instance, the adjusted height is (height) B which accounts, ;
in same sense, for the rounded shape of the carapace. -

lnterpretatibn of the Sample Principal Components

The sample principal components have several interpretations. First, suppose the
underlymg distribution of X is nearly N,(u, %). Then the sample principal component;
¥ = €{(x — X) are realizations of populatlon principal components ¥; = e{(X - “)
Wthh have an N,(0, A) distribution. The diagonal matrix A has entries A, A,, . ..
and ();, e;) are the eigenvalue-eigenvector pairs of %.
Also, from the sample values x;, we can approximate p by X and X by S. IfSi is:
positive definite, the contour con51stmg of all p X 1 vectors x satisfying

’ P

(x-%0)slx-x=2 (8-24)

estimates the constant density contour (x ~ p)'S }(x — u) = c* of the underlyin;“
normal density. The approximate contours can be drawn on the scatter plot to indi-
cate the normal distribution that generated the data. The normality assumption is
useful for the inference procedures discussed in Section 8.5, but it is not required
for the development of the properties of the sample principal compenents summa-
rized in (8-20).

Even when the normal assumption is suspect and the scatter plot may depart
somewhat from an elliptical pattern, we can still extract the eigenvalues from S and ob- -
tain the sample principal components. Geametrically, the data may be plotted as n
points in p-space. The data can then be expressed in the new coordinates, which
coincide with the axes of the contour of (8-24). Now, (8-24) defines a hyperelhpsond
that is centered at x and whose axes are given by the eigenvectors of §7!
equivalently, of S. (See Section 2.3 and Result 4.1, with § in place of X.) The lengths

of these hyperellipsoid axes are proportional to A, 1=1,2,..., p, where

Aizp=-= A = ( are the eigenvalues of S.
Because ¢; has length 1, the absclute value of the ith principal component,
[ %] = |ei(x — x){ gives the length of the projection of the vector (x — X) on the

unit vector &;. [See (2-8) and (2-9).] Thus, the sample principal components
yi = ei(x — Xx),i=1,2,..., p, lie alang the axes of the hyperellipsoid, and their
absolute values are the lengths of the projections of x — ¥ in the directions of the
axes &. Consequently, the sample principal components can be viewed as the
result of translating the origin of the original coordinate system to X and then
rotating the coardinate axes until they pass through the scatter in the directions of
maximum variance.

The geometrical interpretation of the sample principal components is illustrated
in Figure 8.4 for p = 2. Figure 8.4(a) shows an ellipse of constant distance, centered
at X, with A; > A,. The sample principal components are well determined. They'@;
lie along the axes of the ellipse in the perpendicular directions of maximum:;
sample variance. Figure 8.4(b) shows a constant distance ellipse, centered at X, with:z :
Ap = A I Al = ), the axes of the ellipse (circle) of constant distance are not:2
uniquely determined and can lie in any two perpendicular directions, including the,;
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‘XZ X7 -
(x—-X)Sl(x-%)=¢

(a) i, > iz

Figure 8.4 Sample principal components and ellipses of constant distance.

directions of the original coordinate axes. Similarly, the sample principal components
can lie in any two perpendicular directions, including those of the original coordi-
nate axes. When the contours of constant distance are nearly circular or, equiva-
lently, when the eigenvalues of § are nearly equal, the sample variation is homogeneaus
in all directions. It is then not possible to represent the data well in fewer than p
dimensians. .

If the last few eigenvalues A; are sufficiently small such that the variation in the
carresponding €; directions is negligible, the last few sample principal components
can often be ignored, and the data can be adequately approximated by their repre-
sentations in the space of the retained components. (See Section 8.4.)

Finally, Supplement 8A gives a further result concerning the role of the sam-
ple principal components when directly approximating the mean-centered data
Xj - X.

Standardizing the Sample Principal Components

Sample principal components are, in general, not invariant with respect to changes
in scale. (See Exercises 8.6 and 8.7.) As we mentioned in the treatment of popula-
tion components, variables measured on different scales or on a common scale with
widely differing ranges are often standardized. For the sample, standardization is
accomplished by constructing

;=D (x; - %) = i=12,...,n (8-25)
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The n X p data matrix of standardized observations

[ 2} a1 21p
Z ||| 2,
_z:l Zn1 Zn2 Z,,p
T —%H xa—X% Xp = XpT
VS11 V22 NSpp
X1 —X XX X2p ~ Xp
= Vi V522 Vpp (8-26)
X=X X2~ X Lnp Ip
L Vs Vs VSpp
yields the sample mean vector [see (3-24)]
— i x},l -— il—
=1 V&
. "X X
I PR IR !
z=;(lZ) ;Z1—;1— ]; \/32-2 =0 (827
i Xjp — X,
LJ’=1 Vipp
and sample covariance matrix [see (3-27)]
1 1 !
S, = —(Z - —11'Z) (Z - l11'Z)
n-1 n n
1 ' -
-——Z-1zY(Z-17)
n-1
1 ]
== ZZz
(("'1)511 (n — sz (n—1)s;,]
S11 Vs Vs VSt VS“,
1 (n=1)s13 (n—1)sy (n— 1)52,,
=51 VsuVen 522 Vszz'\/spp R (8-28)
(n=1sp, (n—1)s,, (n—1)s,,
L Vit VSpp VS22Vs, Spp i

The sample principal components of the standardized observations are given by
(8-20), with the matrix R in place of S. Since the observations are already “centered”
by construction, there is no need to write the components in the form of (8-21).
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Ifz;,2,,...,2, are standardized observations with covariance matrix R, the ith
sample principal component is

Vi=ez=ény ténnt o+, i=12...,p
where (X,-, €;) is the ith eigenvalue-eigenvector pair of R with
A= A= e =, = 0. Also,

Sample variance (3,) = Iy i=1,2,...,p

Sample covariance (¥, yi) i#*k

In addition, (8-29)
Total (standardized) sample variance = tr(R) = p = M+ A+ + ):p
and

r

S‘i,lkzéik\/x—ia Lk = L,2,...,p

Using (8-29), we see that the proportion of the total sample variance explained
by the ith sample principal component is

Proportion of (standardized) A
sample variance duetoith | == [i=1,2,...,p (8-30)
sample principal component p

A rule of thumb suggests retaining only those components whose variances A; are
greater than unity or, equivalently, only those components which, individually, ex-
plain at least a proportion 1/p of the total variance. This rule does not have a great
deal of theoretical support, however, and it should not be applied blindly. As we
have mentioned, a scree plot is also useful for selecting the appropriate number of
components.

Example 8.5 (Sample principal components from standardized data) The weekly
rates of return for five stocks (JP Morgan, Citibank, Wells Fargo, Royal Dutch Shell,
and ExxonMobil) listed on the New York Stock Exchange were determined for the
period January 2004 through December 2005. The weekly rates of return are
defined as (current week closing price—previous week closing price)/(previous
week closing price), adjusted for stock splits and dividends, The data are listed in
Table 8.4 in the Exercises. The observations in 103 successive weeks appear to be
independently distributed, but the rates of return across stocks are correlated,
because as one expects, stocks tend to move together in response to general
economic conditions.

Let x{, x;,..., x5 denote observed weekly rates of return for JP Morgan,
Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil, respectively. Then

' = [.0011,.0007, .0016,.0040, .0040]
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and

1.000 632 511 115 155

632 1000 574 322 213

R=| 511 574 1000 183 .146
A1s 322 183 1.000 683

A55 213 146 683 1.000

We note that R is the covariance matrix of the standardized observatians

xl—il X2—22 xS_ES

1 = Zh = cey
YTV T Vg T Visss

The eigenvalues and corresponding normalized eigenvectors of R, determined by a
computer, are

A =2437, & =[ 469, 532, 465 387, 361]
A, =1407, & =[-.368 -.236,~315 .585 .606]

Ay= 501, & =[-.604 136, 772, 093, -.109]
Ay = 400, & = 363,-.629, 289,-381, .493)
As = 255, &= .384,-.496, 071, .595, —.498]

Using the standardized variables, we obtain the first two sample principal
components:

Y = €jz = 469z, + 5322, + 46523 + 38774 + 36125
P = &z = - 368z, — 236z, — 31573 + 585z4 + 60625

These components, which account for
AL+ A 2437 + 1.
(%) 100% = (137—5:@) 100% = 77%

of the total (standardized) sample variance, have interesting interpretations. The
first component is a roughly equally weighted sum, or “index,” of the five stacks
This component might be called a general stock-market component, or, simply, a
market component.

The second component represents a contrast between the banking stocks
(JP Morgan, Citibank, Wells Fargo) and the oil stocks (Royal Dutch Shell, Exxon-
Mobil). It might be called an industry component. Thus, we see that most of the
variation in these stock returns is due to market activity and uncorrelated industry
activity. This interpretation of stock price behavior also has been suggested by
King [12].

The remaining components are not easy to interpret and, collectively, represent
variation that is probably specific to each stack. In any event, they do not explain
much of the total sample variance. L
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Example 8.6 (Components from a correlation matrix with a special structure) Geneticists
are often concerned with the inheritance of characteristics that can be measured
several times during an animal’s lifetime. Body weight (in grams) for n = 150
female mice were obtained immediately after the birth of their first four litters.*
The sample mean vector and sample correlation matrix were, respectively,

X' = [39.88,45.08,48.11, 49.95]
and
1.000 7501 6329  .6363
7501 1.000 6925 7386
.6329 6925 1.000 .6625
6363 7386  .6625 1.000

R:

The eigenvalues of this matrix are
A =3.085, Ay =382, Ay=.342, and A, = 217

We note that the first eigenvalue is nearly equalto 1 + (p — 1)7 =1 + (4 — 1)(.6854)
= 3.056, where T is the arithmetic average of the off- diagonal elements of R. The
remaining eigenvalues are small and about equal, although A, is somewhat smaller
than A, and A3 Thus, there is some evidence that the corresponding population
correlation matrix 0 may be of the “equal-correlation” form of (8-15). This notion
is explored further in Example 8.9.

The first principal component

j’l = éiz = .49z, + .52z, + 4923 + .5024

accounts for 100(;\1/ P)% = 100(3.058/4)% = 76% of the total variance. Although
the average postbirth weights increase over time, the variation in weights is fairly
well explained by the first principal component with (nearly) equal coefficients. m

Comment. Anunusually small value for the last eigenvalue from either the sam-
ple covariance or correlation matrix can indicate an unnoticed linear dependency in
the data set. If this occurs, one (or more) of the variables is redundant and should
be deleted. Consider a situation where x;, x,, and x; are subtest scores and the
tatal score x, is the sum x; + x, + x3. Then, although the linear combination
e'x =[1,1,1, -1]x = x; + x; + x3 — x4 is always zero, rounding error in the
computation of eigenvalues may lead to a small nonzero value. If the linear
expression relating x4 to (x, x;,x3) was initially overlooked, the smallest
eigenvalue—eigenvector pair should provide a clue to its existence. (See the discus-
sion in Section 3.4, pages 131-133.)

Thus, although “large” eigenvalues and the corresponding eigenvectors are im-
portant in a principal component analysis, eigenvalues very close to zero should not
be routinely ignored. The eigenvectors associated with these latter eigenvalues may
point out linear dependencies in the data set that can cause interpretive and compu-
tational problems in a subsequent analysis.

“Data courtesy of . J. Rutledge.
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8.4 Graphing the Principal Components

Plots of the principal components can reveal suspect observations, as well as provide_).
checks on the assumption of normality. Since the principal components are linear-
combinations of the original variables, it is not unreasonable to expect them to be
nearly normal. It is often necessary ta verify that the first few principal components
are approximately normally distributed when they are to be used as the input data _
for additional analyses.

The last principal components can help pinpoint suspect ebservations. Each
observation can be expressed as a linear combination .
x; = (Xj8))& + (x8) & + - + (xj&,) €, Lo

= Py + Jaka + o+ Gy

of the complete set of eigenvectors &;, &, ..., &,0f 8. Thus, the magnitudes of the last
pr1n01pa1 components determine how well the ﬁrst few fit the observations. That is,”
Vi€ + Yoy + -+ y]q 1e _ differs from x,byyme +-- 4 y”,e,,,the square of

whose length is 3% fgt ot y] »- Suspect observations will often be such that at least
one of the coordinates jzjq, ..., §j, contributing to this squared length will be large,

(See Supplement 8A for more general approximation results.) -
The following statements summarize these ideas.

1. To help check the narmal assumption, construct scatter diagrams far pairs of the
first few principal components. Also, make Q-Q plots from the sample values
generated by each principal component.

2. Construct scatter diagrams and Q-Q plots for the last few principal compo-
nents. These help identify suspect abservations.

Example 8.7 (Plotting the principal components for the turtle data) We illustrate
the plotting of principal compenents for the data on male turtles discussed in
Example 8.4. The three sample principal components are

>

I

.683(x; ~ 4.725) + .510(x, — 4478) + .523(x3 — 3.703)

=

~.159(x; — 4.725) — .594(x, — 4.478) + .788(x; — 3.703)

3)
1l

y= —T13(x; — 4.725) + 622(x; — 4478) + 324(x3 — 3.703)

where x; = In(length), x; = In(width), and x; = In (height), respectively.

Figure 8.5 shows the Q-Q plot for 3, and Figure 8.6 shows the scatter plot of
(1, ). The observation for the first turtle is circled and lies in the lower right cor-
ner of the scatter plot and in the upper right corner of the Q-0 plot; it may be sus-
pect. This point should have been checked for recarding errors, or the turtle should:,
have been examined for structural anomalies. Apart from the first turtle, the scatter’
plot appears to be reascnably elliptical. The plots for the other sets of principal com-*
ponents do not indicate any substantial departures from normality. -
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The diagnostics involving principal components apply equally well to the
checking of assumptions for a multivariate multiple regression model. In fact,
having fit any model by any method of estimation, it is prudent to consider the

Residual vector = (observation vector) —~ vector of predicted
(estimated) values

or

& =y -Bzx j=12..n (8-31)

] j
(px1)  (px1)  (px1)

for the multivariate linear model. Principal components, derived from the
covariance matrix of the residuals,

1 &S, z.,~ %

np & (& — &) (& — &) (8-32)
can be scrutinized in the same manner as those determined from a random
sample. You should be aware that there are linear dependencies among the residuals
from a linear regression analysis, so the last eigenvalues will be zero, within round-
ing error.
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8.5 Large Sample Inferences

We have seen that the eigenvalues and eigenvectors of the covariance (correlation)
matrix are the essence of a principal component analysis. The eigenvectors deter.
mine the directions of maximum variability, and the eigenvalues specify the var. -
ances. When the first few eigenvalues are much larger than the rest, most of the tota]
variance can be “explained” in fewer than p dimensions.

In practice, decisions regarding the quality of the principal component
approximation must be made on the basis of the eigenvalue—eigenvector .
pairs (X;, &) extracted from S or R. Because of sampling variation, these eigen- -
values and eigenvectors will differ from their underlying population counter-
parts. The sampling distributions of A; and &; are difficult to derive and beyond
the scope of this book. If you are interested, you can find some of these derjva-
tions for multivariate normal populations in [1],[2], and [5]. We shall simply sum-
marize the pertinent large sample results.

Large Sample Properties of A;and &;

Currently available results concerning large sample confidence intervals for Xi and &,
assume that the observations X, X,..., X, are a random sample from a normal
population. It must also be assumed that the (unknown) eigenvalues of % are dis-
tinct and positive, so that A; > A; > --- > A, > 0. The one exception is the case
where the number of equal eigenvalues is known. Usually the conclusions for dis-
tinct eigenvalues are applied, unless there is a strong reason to believe that 3 has a
special structure that yields equal eigenvalues. Even when the normal assumption is
violated, the confidence intervals obtained in this manner still provide some indica-
tion of the uncertainty in A; and &;.

Anderson [2] and Girshick |5] have established the following large sample distribu-

tion theory for the eigenvalues A’ = [5\1, SN Xp] and eigenvectors €y, . .., ép of §:

1. Let A be the diagonal matrix of eigenvalues A;,..., A, of X, then Vn (A—2A)
is approximately N,(0, 2A%).
2, Let
) A
Ei=A D, ———See
% (e = A"

x X

then Vn (€ — e;) is approximately N,(0, E;).
3. Each X,» is distributed independently of the elements of the associated €;.

Result 1 implies that, for n large, the )A\,- are independently distributed. Moreover,
A; has an approximate N(;, 2A%/n) distribution. Using this normal distribution, we
obtain P[|A; — A;| = z(e/2)AV2/n] = 1 — a. A large sample 100(1 — )% confi-
dence interval for A; is thus provided by

~ N

'\i Ai

AT de/2)Vam) - M= 0= dap)vam) (833)
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where z(a/2) is the upper 100(a/2)th percentile of a standard normal distribution.
Bonferroni-type simultaneous 100(1 — )% intervals for m A;’s are obtained by
replacing z(a/2) with z(a/2m). (See Section 5.4.)

Result 2 implies that the €;'s are normally distributed about the corresponding
e;’s for large samples. The elements of each €; are correlated, and the correlation
depends to a large extent on the separation of the eigenvalues Ay, Ay, . .., A, (which
is unknown) and the sample size n. Approximate standard errors for the coeffi-
cients ¢, are given by the square roots of the diagonal elements of (1/n) E; where
E, is derived from E; by substituting A;’s for the A;’s and &;’s for the e;’s.

Example 8.8 (Constructing a confidence interval for A,) We shall obtain a 95% con-
fidence interval for A, the variance of the first population principal component,
using the stock price data listed in Table 8.4 in the Exercises.

Assume that the stock rates of return represent independent drawings from
an Ns(m,X) population, where 3 is positive definite with distinct eigenvalues
Ay > Ay > -+ > As > 0. Since n = 103 is large, we can use (8-33) with ; = 1 to con-
struct 2 95% confidence interval for A; . From Exercise 8.10,A; = .0014 and in addition,
z(.025) = 1.96. Therefore, with 95% confidence,

0014 0014
T =) = or 0011 = A < .0019 =

(1+196VE) (1-196\/Z)

Whenever an eigenvalue is large, such as 100 or even 1000, the intervals gener-
ated by (8-33) can be quite wide, for reasonable confidence levels, even though n is
fairly large. In general, the confidence interval gets wider at the same rate that A;
gets larger. Consequently, some care must be exercised in dropping or retaining
principal components based on an examination of the A;’s.

Testing for the Equal Correlation Structure

The special correlation structure Cov (X}, X)) = Va4, p, or Corr (X;, Xi) = p,
all i # k, is one important structure in which the eigenvalues of X are not distinct
and the previous results do not apply.

To test for this structure, let

1 p - p
1 .-
Hep= po =|% i
(pxp) :
o p - 1
and
Hy: p # Po

A test of Hy versus H; may be based on a likelihood ratio statistic, but Lawley [14]
has demonstrated that an equivalent test procedure can be constructed from the off-
diagonal elements of R.
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Lawley’s procedure requires the quantities
1

I
Te = e k=1L2,...,p, T= r;
P P(p—l)z.qz"
-2
oo (== (=7
p-(p-2)(1 -7y
It is evident that T, is the average of the off-diagonal elements in the kth column (or

row) of R and 7 is the overall average of the off-diagonal elements.
The large sample approximate a-level test is to reject Hy in favor of Hj if

(( _ [zme (rie — ) - )A’:zl(ﬂ - 7){' > xtpeny (p-2)2(@) (8-35)

where x(,,+1)(p_2)/2(a) is the upper (100a)th percentile of a chi-square distribution
with (p + 1)(p ~ 2)/2d.L

(8-34)

Example 8.9 (Testing for equicorrelation structure) From Example 8.6, the sample
correlation matrix constructed from the n = 150 post-birth weights of female

mice is
1.0 7501 6329 6363
R—| 7501 10 6925 7386
T 6320 6925 10 6625

.6363 7386 .6625 1.0

We shall use this correlation matrix to illustrate the large sample test in (8-35).
Here p = 4, and we set

L ppoo
pl oo
Hyp=p,=
0 = Py p o 1 p
ppoop 1
Hy:p # py

Using (8-34) and (8-35), we obtain

o= %(.7501 + 6329 + 6363) = 6731, T, = 7271,

T3 = 6626, T, = 6791

7= —(3—) (7501 + 6329 + 6363 + 6925 + 7386 + .6625) = .6855
S (rik = F)F = (7501 — 6855)?
i<k

+ (6329 — .6855)2 + --- + (.6625 — .6855)
= 01277
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4
S (Fe = F)? = (6731 — .6855)2 + --- + (6791 — .6855)% = 00245
k=1

(4 = 1?[1 — (1 - .6855)?]

- = 2.1329
7T - (@-2)(1 - 6855y
and
(150 — 1)
=1 = gassy 01277 — (21329)(00245)] = 114

Since (p + 1) (p — 2)/2 = 5(2)/2 = 5, the 5% critical value for the test in (8-35) is
x%(.05) = 11.07. The value of our test statistic is approximately equal to the large
sample 5% critical point, so the evidence against Hy {(equal correlations) is strong,
but not overwhelming. o R

As we saw in Example 8.6, the smallest eigenvalues Ay, A3, and A4 are slightly
different, with A4 being somewhat smaller than the other two. Consequently, with
the large sample size in this problem, small differences from the equal correlation
structure show up as statistically significant. [

Assuming a multivariate normal population, a large sample test that all vari-
ables are independent (all the off-diagonal elements of X are zero) is contained in
Exercise 8.9.

8.6 Monitoring Quality with Principal Components

In Section 5.6, we introduced multivariate control charts, including the quality ellipse
and the T2 chart. Today, with electronic and other automated methods of data collec-
tion, it is not uncommon for data to be collected on 10 or 20 process variables. Major
chemical and drug companies report measuring over 100 process variables, including
temperature, pressure, concentration, and weight, at various positions along the pro-
duction process. Even with 10 variables to monitor, there are 45 pairs for which to cre-
ate quality ellipses. Clearly, another approach is required to both visually display
important quantities and still have the sensitivity to detect special causes of variation.

Checking a Given Set of Measurements for Stability

LetX,,X;,..., X, be arandom sample from a multivariate normal distribution with
mean g and covariance matrix X. We consider the first two sample principal compo-
nents, y; = &j(x; — X) and y;; = e3(x; — X). Additional principal components
could be considered, but two are easier to inspect visually and, of any two components,
the first two explain the largest cumulative proportion of the total sample variance.

If a process is stable over time, so that the measured characteristics are influ-
enced only by variations in common causes, then the values of the first two principal
components should be stable. Conversely, if the principal components remain stable
over time, the common effects that influence the process are likely to remain con-
stant. To monitor quality using principal components, we consider a two-part proce-
dure. The first part of the procedure is to construct an ellipse format chart for the
pairs of values (31, Jj2) forj = 1,2,..., n.



460 Chapter 8 Principal Components

By (8-20), the sample variance of the first principal component y, is given by the
largest eigenvalue A;, and the sample variance of the second principal component -
is the second-largest eigenvalue A-_, The two sample components are uncorrelated,
so the quality ellipse for n large (see Section 5.6) reduces to the collection of pajrg of
possible values (yl, ) such that

22
}’1 Y2

A—+.—sza 8-
A n (@) (36)-

Example 8.10 (An ellipse format chart based on the first two principal components)”
Refer to the police department overtime data given in Table 5.8. Table 8.1 contains
the five normalized eigenvectors and eigenvalues of the sample covariance matrix §.

The first two sample components explain 82% of the total variance.
The sample values for all five components are displayed in Table 8.2.

Table 8.1 Eigenvectors and Eigenvalues of Sample Covariance Matrix for
Police Department Data
. ~ ~ ~ ~ .
Variable € e, e, ey [
Appearances overtime (x;) 046 —.048 629  —-.643 432
Extraordinary event (x,) 039 985 -.077 —-.151 -.007
Holdover hours (x3) —.658 107 .582 250 —-392
COA hours (x4) 734 .069 .503 397 -213
Meeting hours (xs) —.155 107 081 586 T84
A | 2770226 1429206 - 628,129 221,138 99,824

Table 8.2 Values of the Principal Components for
the Police Department Data
Period Vi1 Y2 Yis Yia Yis
1 2044.9 588.2 4258 —189.1  —209.8
2 —2143.7 —686.2 883.6 —5659 —4415
3 —177.8 —464.6 707.5 736.3 38.2
4 —2186.2 450.5 ~184.0 4437 3253
5 —878.6 —~545.7 115.7 296.4 437.5
6 563.2 —10454 281.2 620.5 142.7
7 403.1 66.8 340.6 —~135.5 521.2
8 —1988.9 —801.8 -1437.3 —148.8 61.6
9 132.8 563.7 125.3 68.2 611.5-
10 —2787.3 —213.4 7.8 169.4  —202.3
11 2834 3936.9 -0.9 276.2 —159.6
12 761.6 256.0 -2153.6 —-418.8 28.2
13 —498.3 244.7 966.5 —1142.3 182.6
14 23662  ~1193.7 —-165.5 2706 —3449
15 1917.8 —782.0 —82.9 -196.8 —89.9
16 2187.7 —373.8 170.1 -841 -250.2
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T T 1 17 1T 1T 71 T T Figure 8.7 The 95% control ellipse
—5000 —2000 0 2000 4000 based on the first two principal
» components of overtime hours.

Let us construct a 95% ellipse format chart using the first two sample principal
components and plot the 16 pairs of component values in Table 8.2.
Although n = 16 is not large, we use x3(.05) = 5.99, and the ellipse becames

AL Ay

= 599

This ellipse centered at (0, 0), is shown in Figure 8.7, along with the data.

One point is out of control, because the second principal component for this
point has a large value. Scanning Table 8.2, we see that this is the value 3936.9 for pe-
riod 11. According to the entries of €, in Table 8.1, the second principal component
is essentially extraordinary event overtime hours. The principal component approach
has led us to the same conclusion we came to in Example 5.9. -

In the event that special causes are likely to produce shocks to the system, the
secand part of our two-part procedure—that is, a secand chart—is required. This
chart is created from the information in the principal components not involved in
the ellipse format chart.

Consider the deviation vector X — u, and assume that X is distributed as
Np(u,%). Even without the normal assumption, X; — g can be expressed as the
sum of its projections on the eigenvectors of X

X-—p=X-p)ee; + (X — n)ee
+(X—p)ees +--+ (X — pu)epe,
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or
X—p=Ye + Ye; + Y3e3 Tt Ypep (8-37)
where ¥; = (X ~ p)’e; is the population ith principal component centered to have

mean 0. The approximation to X — p by the first two principat components has the
form Y,e, + Yse,. This leaves an unexplained component of

X-pu-Ye Y

Let E = [ef, e,,..., €,] be the orthogonal matrix whose columns are the eigenvec.
tors of X. The orthogonal transformation of the unexplained part,

¥ Y 0 0

Y, 0 Y, 0 0
E(X-p-Ye-he)= hH(—1 0~ 0]|=I1B =} 0

: : Ya

v,| Lol Lo |y,

so the last p — 2 principal components are obtained as an orthogonal transformation
of the approximation errors. Rather than base the T? chart on the approximation
errors, we can, equivalently, base it on these last principal components. Recall that

Var(YV;) = A; for i=12,...,p

and Cov(Y,, Y,) = 0 for i # k. Consequently, the statistic YE‘-’)I;:Z,‘Y(z)Y(Z)’ based
on the last p — 2 population principal components, becomes

v} Y f
Lttt A,, (8-38)
This is just the sum of the squares of p ~ 2 independent standard normal variables,
Az /%Y., and so has a chi-square distribution with p — 2 degrees of freedom.

In terms of the sample data, the principal components and eigenvalues must be
estimated. Because the coefficients of the linear combinations €; are also estimates,
the principal components do not have a normal distribution even when the popula-
tion is normal. However, it is customary to create a T2-chart based on the statistic

Az A l\2
Y3 }’,2'4 Yi
T}Z.=__]_+A_+...+ s

~ ~

A Ag A,

which involves the estimated eigenvalues and vectors. Further, it is usual to appeal
to the large sample approximation described by (8-38) and set the upper control
limit of the T2-chart as UCL = ¢ = x3_y(a).

This 7 2-statistic is based on high-dimensional data. For example, when p = 20
variables are measured, it uses the information in the 18-dimensional space perpen-
dicular to the first two eigenvectors €; and €,. Still, this 72 based on the unexplained
variation in the original observations is reported as highly effective in picking up
special causes of variation.
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Example 8.11 (A T>-chart for the unexplained [orthogonal] overtime hours)
Consider the quality control analysis of the police department overtime hours in
Example 8.10. The first part of the quality monitoring procedure, the quality ellipse
based on the first two principal components, was shown in Figure 8.7. To illustrate
the second step of the two-step monitoring procedure, we create the chart for the
other principal components.

Since p = 5, this chart is basedon 5 — 2 = 3 dimensions, and the upper control
limit is x2(.05) = 7.81. Using the eigenvalues and the values of the principal com-
ponents, given in Example 8.10, we plot the time sequence of values
T? = {’23 + y.i“ + {is

Ay A As

where the first value is 72 = .891 and so on. The T2-chart is shown in Figure 8.8.

1

ucL

Period

Figure 8.8 A T'2-chart based on the last three principal components of overtime hours.

Since points 12 and 13 exceed or are near the upper control limit, something has
happened during these periods. We note that they are just beyond the period in
which the extraordinary event overtime hours peaked.

From Table 8.2, j, is large in period 12, and from Table 8.1, the large coefficients
in e5 belong to legal appearances, holdover, and COA hours. Was there some adjust-
ing of these other categories following the period extraordinary hours peaked? m

Controlling Future Values

Previously, we considered checking whether a given series of multivariate observa-
tions was stable by considering separately the first two principal components and
then the last p — 2. Because the chi-square distribution was used to approximate
the UCL of the T2-chart and the critical distance for the ellipse format chart, no fur-
ther modifications are necessary for monitoring future values.
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B 45

Example 8.12 (Control ellipse for future principal components) In Example 8.1¢ Wee
determined that case 11 was out of contral. We drop this point and recalculate t},g
eigenvalues and elgenvectors based on the covariance of the remaiming 15 observaE

tions. The results are shown in Table 8.3.

Table 8.3 Eigenvectors and Eigenvalues from the 15 Stable Observations
& & €; e

Appearances overtime (x;) 049 629 304 479
Extraordinary event (x,) .007 -.078 939 -.260
Holdover hours (x3) —.662 582 -.089 -.158
COA hours (x4) 731 .503 -.123 -.336
Meeting hours ( x5) -.159 081 —-.058 -752
X [2.964,749.9 6729951 396,596.5 194,401.0

The principal components have changed. The component consisting primarily of
extraordinary event overtime is now the third principal component and is not includ-
ed in the chart of the first two. Because our initial sample size is only 16, dropping a
single case can make a substantial difference. Usually, at least 50 or more observa-
tions are needed, from stable operation of the process, in order to set future limits.

Figure 8.9 gives the 99% prediction (8-36) ellipse for future pairs of values for
the new first two principal components of overtime. The 15 stable pairs of prmqpal
components are also shown. ]

%“ | Figure8.9 A 99% ellipse
P TT T T T T T T T T T T formatchartfor thefirst two -
73000 2000 0 2000 4000 principal components of

iz future values of overtime.
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In some applications of multivariate control in the chemical and pharmaceutical
industries, more than 100 variables are monitored simultaneously. These include nu-
merous process variables as well as quality variables. Typically, the space orthogonal
to the first few principal components has a dimension greater than 100 and some of
the eigenvalues are very small. An alternative approach (see [13]) to constructing a
control chart, that avoids the difficulty caused by dividing a small squared principal
component by a very small eigenvalue, has been successfully applied. To implement
this approach, we proceed as follows. ’

For each stable observation, take the sum of squares of its unexplained component

. o e .
dfj = (xj = X — §1&1 — Jjpey) (x; — X = @y — )

Note that, by inserting EE' = I, we also have
2 s _ 5.4 A A NI T _5.a s oA & o
di; = (x; — X — yj1&1 — ¥j2;) EE'(x; — X — yj1€; — ypo€y) = ’; Vik

which is just the sum of squares of the neglected principal components.

Using either form, the d3 ; are plotted versus j to create a control chart. The
lower limit of the chart is 0 and the upper limit is set by approximating the distribu-
tion of d, j as the distribution of a constant ¢ times a chi-square random variable with
v degrees of freedom.

For the chi-square approximation, the constant ¢ and degrees of freedom v are

chosen to match the sample mean and variance of the déj, ji=1,2,..., n. In particu-
lar, we set
- 1&
dU = ; E dZUJ =cv
j=1
2 1 < 2 2 2 2
sd2=n_12(duj dy)” = 2%y

and determine

2 32N\2

S d
c=-% and u=2(;])

2d%} Sq?

The upper control limit is then cy2(a), where & = .05 or .01.



Supplement

i

THE GEOMETRY OF THE SAMPLE
PRINCIPAL COMPONENT
APPROXIMATION

In this supplement, we shall present interpretations for approximations to the data
based on the first r sample principal components. The interpretations of both the
p-dimensional scatter plot and the #-dimensional representation rely on the algebraic
result that follows. We consider approximations of the form A = [aj, a,...,a3,]
to the mean corrected data matrix (nxp, T

x; — K x;— %X,...,x, — ¥]'
The error of approximation is quantified as the sum of the np squared errors

E (xj -X- ai)l(xl -X- i i (x]l - xi - aji)2 (8A‘1)

j=1 j=1i=

—

Result 8A.) Let (Q) be any matrix with rank(A) = r < min(p, n). Let E, =
nxXp

[&;,&,...,&,], where & is the ith eigenvector of §.The error of approximation sum
of squares in (8A-1) is minimized by the choice

(% = ’_‘):
A= (%2 “ 0 EE, = (15, 5, ] B}
(%, — X)’
so the jth column of its transpose Alis

@ = yj&; + ype; + -+ y8,

466
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where
(31> Bi2o -+ Virl = [€1(%) — X), &(x; = X),..., &/(x; — X)]'

are the values of the first 7 sample principal components for the jth unit. Moreover,
n
S —X—a)(x; =X —a) = (n—=1)( Ay +- + A5
=

where X,H == X,, are the smallest eigenvalues of S.

Proof. Consider first any A whose transpose A’ has columns a; that are a linear
combination of a fixed set of r perpendicular vectors u,, w,,...,u,, so that

U = [uy, uy,...,u,] satisfies U'U = L For fixed U, x; — X is best approximated by
its projection on the space spanned by uy, u,,..., u, (see Result 2A.3), or

(xj - i)’l.lll.ll + (Xl - i)’l.lZI.lz + .-+ (Xl - i),llrl.lr

“i(x] - f)
= [upuy,...,u,] '“2("":_ . UU'(x; - ¥) (8A-2)
uy(x, — X)

This follows because, for an arbitrary vector b s
x; —x—Ub; =x; —x - UU'(x, — x) + UU'(x; — x) — Ub;
= (I -U0U)(x; - x) + U(U(x, - X) — b))

so the error sum of squares is
(x;, X - Ub)(x; —x— Ub)) = (x; - x)'(I - UU)(x; —x) + 0

+ (U'(x; - %) —b)'(U'(x; — x) — b)
where the cross product vanishes because (I — UUYU=U - UU'U =
U ~ U = 0. The last term is positive unless b; is chosen so that b; = U'(x; — X)

and Ub; = UU’(x; — X) is the projection of x; — X on the plane.
Further, with the choice a; = Ub; = UU’(x; — x), (8A-1) becomes

]_2:; (x; =X - UU'(x; - X)) (x; ~ x ~ UU'(x; — X))

= ﬁ; (x; — %) (I~ UU")(x; — )
j=

= nl (x] - i),(x] - i) - i (x] - i),UU’(x, - i) (8A'3)
i= =1

We are now in a position to minimize the error over choices of U by maximizing the
last term in (8A-3). By the properties of trace (see Result 2A.12),

ﬁ; (x; —X)'UU'(x; - X) = i tr{(x; ~ X)'UU'(x; - X)]
=

j=1
= 2::1 tr[UU'(x; — X) (x; — %)']
(n - 1) tr[UU'S] = (n — 1) tr[U'SU]  (8A-4)

i
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That is, the best choice for U maximizes the sum of the diagonal elements of U'Sy_
From (8 -19), selecting uy to maximize u}Su,, the first diagonal element of U'SU, gjveg :
u; = &. For u, perpendicular to €, u;Su, is maximized by &, . [See (2-52).] Contlnum& :
wefindthat U = [&,&,,...,&,] = E,and A’ = E,E! X —Xx — X, %, ~ X a5 .
asserted. o
With this choice the ith diagonal element of U'sU is ejSe; = ,-(A,-e,-) = )\,. so .

n n
tr[U/SU = Ay + Ag+ o + A, Also, Y (x;~%)'(x; — X) = tr[E (% = %) (x; "_‘)'}‘"
j=1 j=1
=(n-1)tr(S) =(n - 1)()\1 + Az ++ Ap). Let U = U in (8A-3), and the
error bound follows. m

AT SRR S

S

Froak

The p-Dimensional Geometrical Interpretation

The geometrical interpretations involve the determination of best approximating
planes to the p-dimensional scatter plot. The plane through the origin, determmed
by uy, u, ..., W, consists of all points x with

x = bju; + byu; + - + bu, = Ub, forsome b

This plane, translated to pass through a, becomes a + Ub for some b.
We want to select the r-dimensional plane a + Ub that minimizes the sum of

n

squared distances >, d?} between the observations x ; and the plane. If x; is approxi-
j=1

mated by a + Ub; with >, b; = 0,° then
j=1

21 (x; — a — Ub))’(x; — a — Ub)
7

i
.M:

-

(x,-—)_(—Ub/+i—a)'(x,-—i—Ub,-+i—a)

-

!

= ‘, (x; —x —Ub) (x; —x — Ub)) + n(x — a)'(x — a)

-~
= N
[y

7

= Y (x~ % ~ EEi(x; ~ %) (x, - X - EE(x; - %))

~.
0
—

by Result 8A.1, since [Uby,...,Ub,] = A’ has rank (A) =< r. The lower bound is
reached by taking a = X, so the plane passes through the sample mean. This plane is
determined by €, &,,...,¢&,. The coefficients of &, are &,(x; — X) = Jj;, the kth
sample principal component evaluated at the jth observation.

The approximating plane interpretation of sample principal compenents is
illustrated in Figure 8.10.

An alternative interpretation can be given. The investigator places a plane
through ¥ and moves it about to obtain the largest spread among the shadows of the

" _ - -
SiE Y b; = nb # 0,usea + Ub; = (a + Ub) + U(b; ~ b) = a" + Ub].
i=1 1
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> 2 Figure 8.10 The r = 2-dimensional
plane that approximates the scatier
n

plot by minimizing >, d7.
=1

observations. From (8A-2), the projection of the deviation x; — X on the plane Ub is
v; = UU'(x; — ). Now, V = 0 and the sum of the squared lengths of the projection
deviations

n n
> vivi= > (x; ~ X)UU'(x; — X) = (n — 1) tr[U'SU]
Jj=1 j=1

is maximized by U = E. Also, since ¥ = 0,
n n

(n = 1)8, = 21 =D =9 = 2wy
i= =

and this plane also maximizes the total variance

1 n N 1 n .
tr(S,) = (T—_—-I—)tr[g v,-V,-jl = “‘“—(n Y trliz vJ-V,:|

i=1

The n-Dimensional Geometrical Interpretation

Let us now consider, by columns, the approximation of the mean-centered data
matrix by A. Forr = 1, the ith column [x,; — ¥;, Xp; — %;, ..., X,; — X;] is approxi-
mated by a multiple ¢;b’ of a fixed vector b’ = [&y, by, ..., b,]. The square of the
length of the error of approximation is

n
LE= 3 (x;i = % — cib)?
j=1
Considering ( A ) to be of rank one, we conclude from Result 8A.1 that
nxp
éi(x; — X) ¥

eei(x, — X) Y21 | as
: ;e

»>
il

éléll(xn - i—) ;’1n
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Exercises

(a) Principal component of § (b) Principal component of R

Figure 8.11 The first sample principal component, y;, minimizes the
sum of the squares of the distances, L?; from the deviation vectors,

d:'= [X],- - i,-,xg,» = Xjseeon Xpyi T f,-],toaline.

'

p

minimizes the sum of squared lengths >, L?.That is, the best direction is determined
=1 .

by the vector of values of the first principal component. This is illustrated in

Figure 8.11(a). Note that the longer deviation vectors (the larger s;;’s) have the most

p
influence on the minimization of 3, L.
i=1
If the variables are first standardized, the resulting vector [(x;; — X,)/ Vs,
(x2i = %)/ Vsisy ..., (%0 — %)/ Vs;; ] has length n — 1 for all variables, and each
vector exerts equal influence an the choice of direction. [See Figure 8.11(b).]
In either case, the vector b is moved around in n-space to minimize the sum of

P

the squares of the distances ¥, L}. In the former case L? is the squared distance
i=1

between [x,; — X;, x2; — %,,..., X,; — %;] and its projection on the line determined

by b. The second principal component minimizes the same quantity among all

vectors perpendicular to the first choice.

8.).

8.2.

Determine the population principal components Y; and ¥; for the covariance matrix

5 2
Also, calculate the proportion of the total population variance explained by the first
principal component.

Convert the covariance matrix in Exercise 8.1 to a correlation matrix p.

(a) Determine the principal components ¥; and ¥, from 0 and compute the proportion
of total population variance explained by ¥;.
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8.5.

8.6.
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Exercises 471

(b) Compare the compaonents calculated in Part a with those obtained in Exercise 8.1.
Are they the same? Should they be?

(c) Compute the correlations py, z,, py,,z,. and py, z,.
Let

M

I
c o
(=
s o0

Determine the principal components Y;, Y,, and ¥;. What can you say about the eigen-
vectors (and principal components) associated with eigenvalues that are not distinct?

Find the principal components and the proportion of the total population variance
explained by each when the covariance matrix is

o o% 0 ] ]
3= 0'2p ol 0'2p , ~——=<p<—=
2 2 V2 V2

0 o9 o

(a) Find the eigenvalues of the correlation matrix
1 pop

P=|p 1 p

p p 1

Are your results consistent with (8-16) and (8-17)?
(b) Verify the eigenvalue—eigenvector pairs for the p X p matrix 0 givenin (8-15).

Data on x; = sales and .f-_, = profits for the 10 largest companies in the world were
listed in Exercise 1.4 of Chapter 1.

From Example 4.12
5= 155.60 S = 7476.45 303.62
14.70 |’ 303.62 26.19

(a) Determine the sample principal components and their variances for these data. (You
may need the quadratic formula to solve for the eigenvalues of S.)

(b) Find the proportion of the total sample variance explained by y;.
(c) Sketch the constant density ellipse (x — X)'S™!(x — X) = 1.4, and indicate the
principal compenents ¥, and 3 on your graph.

(d) Compute the correlation coefficients ry, ,,,k = 1,2. What interpretation, if any, can

you give ta the first principal companent?

Convert the covariance matrix S in Exercise 8.6 to a sample correlation matrix R.
(a) Find the sample principal components ¥;, ¥, and their variances.

(b) Compute the proportion of the total sample variance explained by ;.

(c) Compute the carrelation coefficients ry, ,,, k = 1,2. Interpret ;.

(d) Compare the components obtained in Part a with those obtained in Exercise 8.6(a).
Given the original data displayed in Exercise 1.4, do you feel that it is better to
determine principal components from the sample covariance matrix or sample
correlation matrix? Explain.
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8.8. Use the results in Example 8.5.

(a) Compute the correlations ry, ., fori = 1,2 and & = 1,2,...,5. Do these corre]

- : : 2 10T ] a-;
tions reinforce the interpretations given to the first two components? Explain, :

(b) Test the hypothesis ‘
1L ppoper g

p 1l ppop
Hyp=po=|p p 1 p p ~
pprplop .
g pppl -

versus
Hi:p # Po

at the 5% level of significance. List any assumptions required in carrying out this tegt,

8.9. (A test that all variables are independent.)
(a) Consider that the normal theory likelihood ratio test of Hy: % is the diagonal matrix

oy 0 -+ 0
0 om0 s
0 0 - op
Show that the test is as follows: Reject Hy if
n/2
A= -I;SIS—:/Z =|R["? < ¢
it

i=1

For a large sgm.ple size, —2In A is approximately Xf,( p~1)/2- Bartlett [3] suggests that
the test statistic —2{1 — (2p + 11)/6n]In A be used in place of ~21In A. This
results in an improved chi-square approximation. The large sample « critical point is
X3(p~1)2(e). Note that testing X = X is the same as testing p = L

(b) Show that the likelihood ratio test of Hy: 3 = o rejects Hy if

1=1

A= Ll IS L. 3 S =

(te(S)/p)™? | (18
(péA‘)

i [

A . .

|§ |2 ! ,:geometrxc mean A,-:,""/z <
- el ¢

arithmetic mean A;

For a large sample size, Bartlett [3] suggests that
~2(1 = (2p® + p + 2)/6pn]in A
is_approximately x},+2)(p-1)2- Thus, the large sample « critical point is

X%p+2)( p-1)/2(a). This test is called a sphericity test, because the constant density
contours are spheres when % = ¢?I. i
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Hint:
(a) max L(pu, %) is given by (5-10), and max L(u, %) is the product of the univariate
©,

n
2 Xji

B0 j=1

likelihoods, max(27r)‘"/207,"/25xp|:—2(x,-,»—/.L,»)z/ZoiZ|. Hence fi; = n'
=1

and 6;; = (1/n) 3, (x;; — i,-)z. The divisor n cancels in A, so S may be used.
j=1

(b) Verify 62 = [2 (= B+t D (x, - ip)2:|/rlp under Hy. Again,
j=1 j=1

the divisors n cancel in the statistic, so S may be used. Use Result 5.2 to calculate the
chi-square degrees of freedom.

The following exercises require the use of a computer.

The weekly rates of return for five stocks listed on the New York Stock Exchange are given

in Table 8 4. (See the stock-price data on the following website: www.prenhall.com/statistics.)

(a) Construct the sample covariance matrix S, and find the sample principal components
in (8-20). (Note that the sample mean vector x is displayed in Example 8.5.)

(b) Determine the proportion of the total sample variance explained by the first three
principal components. Interpret these components.

(c) Construct Bonferroni simultanecus 90% confidence intervals for the variances
A1, Az, and A; of the first three population components Yy, Y, and Y3.

(d) Given the results in Parts a—, do you feel that the stock rates-of-return data can be
summarized in fewer than five dimensions? Explain.

Table 8.4 Stock-Price Data (Weekly Rate Of Return)
JP Wells Royal Exxon
Week Morgan Citibank Fargo Dutch Shell Mobil
1 0.01303 —0.00784 —0.00319 —0.04477 0.00522
2 0.00849 0.01669 —0.00621 0.01196 0.01349
3 -0.01792 —0.00864 0.01004 0 -0.00614
4 0.02156 —0.00349 0.01744 -0.02859 —0.00695
5 0.01082 0.00372 -0.01013 0.02919 0.04098
6 0.01017 -0.01220 —0.00838 0.01371 0.00299
7 0.01113 0.02800 0.00807 0.03054 0.00323
8 0.04848 —0.00515 0.01825 0.00633 0.00768
9 —0.03449 —0.01380 —0.00805 —0.02990 —0.01081
10 —0.00466 0.02099 —0.00608 —0.02039 —0.01267
94 0.03732 0.03593 0.02528 0.05819 0.01697
95 0.02380 0.00311 —0.00688 0.01225 0.02817
96 0.02568 0.05253 0.04070 ~0.03166 —0.01885
97 -0.00606 0.00863 0.00584 0.04456 0.03059
98 0.02174 0.02296 0.02920 0.00844 0.03193
99 0.00337 —0.01531 -0.02382 —0.00167 —0.01723
100 0.00336 0.00290 —0.00305 —0.00122 —0.00970
101 0.01701 0.00951 0.01820 —0.01618 —0.00756
102 0.01039 —0.00266 0.00443 —0.00248 —0.01645
103 -0.01279 —0.01437 -0.01874 —0.00498 —0.01637
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8.12.

Consider the census-tract data listed in Table 85. Suppose the observations op
X5 = median value home were recorded in ten thousands, rather than hundred thousands,
of doflars; that is, multiply all the numbers listed in the sixth column of the table by 10.

(a) Construct the sample covariance matrix S for the census-tract data whep
X = median value home is recorded in ten thousands of dollars. (Note that thig.,
covariance matrix can be abtained from the covariance matrix given in Example 83
by multiplying the off-diagonal elements in the fifth column and row by 10 and the
diagonal element sss5 by 100. Why?)

(b) Obtain the eigenvalue—eigenvector pairs and the first two sample principal compo.-
nents for the covariance matrix in Part a.

(¢) Compute the proportion of total variance explained by the first two principal -
components obtained in Part b. Calculate the correlation coefficients, r, .., and
interpret these components if possible. Compare your results with the results in’
Example 8.3. What can you say about the effects of this change in scale on the
principal components?

Consider the air-poilution data listed in Table 1.5. Your job is to summarize these data in
fewer than p = 7 dimensions if possible. Conduct a principal component analysis of the -
data using both the covariance matrix $ and the correlation matrix R. What have you
learned? Does it make any difference which matrix is chosen for analysis? Can the data be
summarized in three or fewer dimensions? Can you interpret the principal components?

Table 8.5 Census-tract Data
Total Professional Employed Government Median

population degree age over 16 employment home value

Tract {thousands) (percent) (percent) (percent) ($100,000)
1 2.67 5.7 69.02 303 1.48
2 225 4.37 72.98 433 1.44
3 312 10.27 64.94 320 2.1
4 5.4 744 71.29 24.5 1.85
5 5.54 9.25 74.94 31.0 223
-6 5.04 4.84 53.61 48.2 1.60
7 3.14 482 67.00 376 1.52
8 243 2.40 67.20 36.8 1.40
9 5.38 4.30 83.03 19.7 2.07
10 7.34 2.73 72.60 24.5 1.42
52 725 1.16 78.52 23.6 1.50
53 544 2.93 73.59 223 1.65
54 5.83 4.47 77.33 26.2 216
55 3.74 226 79.70 202 1.58
56 921 2.36 74.58 21.8 1.72
57 2.14 6.30 86.54 17.4 2.80
58 6.62 479 78.84 200 233

59 4.24 5.82 71.39 27.1 1.69 !

60 4.72 47 78.01 20.6 1.55
61 6.48 493 74.23 209 1.98

Note; Observations from adjacent census tracts are likely to be correlated. That is, these 61 observations may not
constitute a random sample. Complete data set available at www.prenhall.com/statistics.

T N

e
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8.14.

8.15.

8.16.

Exercises 475

In the radiotherapy data listed in Table 1.7 (see also the radiotherapy data on the
website www.prenhall.com/statistics), the n = 98 abservations on p = 6 variables rep-
resent patients’ reactions to radiotherapy.

(a) Obtain the covariance and correlation matrices S and R for these data.

(b) Pick one of the matrices S or R (justify your choice), and determine the eigenval-
ues and eigenvectors. Prepare a table showing, in decreasing order of size, the per-
cent that each eigenvalue contributes to the total sample variance.

(c) Given the results in Part b, decide on the number of important sample principal
components, Is it possible to summarize the radiotherapy data with a single reaction-
index component? Explain.

(d) Prepare a table of the correlation coefficients between each principal component
you decide to retain and the original variables. If possible, interpret the components.

Perform a principal component analysis using the sample covariance matrix of the
sweat data given in Example 5.2. Construct a Q-0 plot for each of the important
principal components. Are there any suspect observations? Explain.

The four sample standard deviations for the postbirth weights discussed in Example 8.6
are

Vi1 = 32,9909, Vs, = 335918, Vs, = 36.5534, and Vs, = 37.3517
Use these and the correlations given in Example 8.6 to construct the sample covariance
matrix S. Perform a principal component analysis using S.

Over a period of five years in the 1990s, yearly samples of fishermen on 28 lakes in
Wisconsin were asked to report the time they spent fishing and how many of each
type of game fish they caught. Their responses were then converted to a catch rate per
hour for

x; = Bluegill x3 = Black crappie x3 = Smallmouth bass

x4 = Largemouth bass x5 = Walleye x¢ = Northern pike
The estimated correlation matrix (courtesy of Jodi Barnet)

1 4919 2636 4653 -—2277  .0652

4919 1 3127 3506 -.1917  .2045

_ 2635 3127 1 4108  .0647 2493
4653 3506 4108 1 —.2249 2293
—.2277 —.1917 .0647 -.2249 1 -.2144
0652 2045 2493 2293 -.2144 1

is based on a sample of about 120. (There were a few missing values.)

Fish caught by the same fisherman live alongside of each other, so the data should
provide some evidence on how the fish group. The first four fish belong to the centrar-
chids, the most plentiful family. The walleye is the most popular fish to eat.

(a) Comment on the pattern of correlation within the centrarchid family x, through x,.
Does the walleye appear to group with the other fish?

(b) Perform a principal component analysis using only x, through x,. Interpret your
results.

(c) Perform a principal component analysis using all six variables. Interpret your results.
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8.17. Using the data on bone mineral content in Table 1.8, perform a principal component
analysis of 8.

8.18. The data on national track records for women are listed in Table 1.9.

(a) Obtain the sample correlation matrix R for these data,and determine its eigenvaIUes .
and eigenvectors. }

(b) Determine the first two principal components for the standardized variables. pre.
pare a table showing the correlations of the standardized variables with the compo-...
nents, and the cumulative percentage of the total (standardized) sample variance -
explained by the two components. .

(c) Interpret the two principal components obtained in Part b. (Note that the first =
component is essentially a normalized unit vector and might measure the athlet. ~
ic excellence of a given nation. The second component might measure the rea. --
tive strength of a nation at the various running distances.) :

(d) Rank the nations based on their score on the first principal component. Does this '
ranking correspond with your inituitive notion of athletic excellence for the various
countries?

8.19. Refer to Exercise 8.18. Convert the national track records for women in Table 19 to
speeds measured in meters per second. Notice that the records for 800 m, 1500 m,
3000 m, and the marathon are given in minutes. The marathon is 262 miles, or
42,195 meters, long. Perform a principal components analysis using the covariance
matrix S of the speed data. Compare the results with the results in Exercise 8.18. Do
your interpretations of the components differ? If the nations are ranked on the basis of
their score on the first principal component, does the subsequent ranking differ from
that in Exercise 8.187 Which analysis do you prefer? Why?

8.20. The data on national track records for men are listed in Table 8.6. (See also the data
on national track records for men on the website www.prenhall.com/statistics) Repeat
the principal component analysis outlined in Exercise 8.18 for the men. Are the results
consistent with those obtained from the women’s data?

8.21. Refer to Exercise 8.20. Convert the national track records for men in Table 8.6 to speeds
measured in meters per second. Notice that the records for 800 m, 1500 m, 5000 m,
10,000 m and the marathon are given in minutes. The marathon is 26.2 miles, or
42,195 meters, long. Perform a principal component analysis using the covariance matrix
S of the speed data, Compare the results with the results in Exercise 8.20. Which analysis
do you prefer? Why?

8.22. Consider the data on bulls in Table 1.10. Utilizing the seven variables YrHgt, FtFrBody,
PrctFFB, Frame, BkFat, SaleHt, and SaleW?t, perform a principal component analysis
using the covariance matrix S and the correlation matrix R. Your analysis should include
the following:

(a) Determine the appropriate number of components to effectively summarize the
sample variability. Construct a scree plot to aid your determination.

(b) Interpret the sample principal components.

{c) Do you think it is possible to develop a “body size” or “body configuration” index
from the data on the seven variables above? Explain.

(d) Using the values for the first two principal components, plot the data in a two-
dimensional space with $; along the vertical axis and 3, along the horizontal axis.
Can you distinguish groups representing the three breeds of cattle? Are there any
outliers?

(e) Construct a Q-Q plot using the first principal component. Interpret the plot.
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Table 8.6 National Track Records for Men

100m 200m 400m 800m 1500m 5000m 10,000 m Marathon

Country (s) (s) (s) (min) (min)  (min) (min) (min)
Argentina 10.23 2037 46.18 1.77 3.68 13.33 27.65 129.57
Australia 9.93 20.06 44.38 1.74 353 12.93 27.53 127.51
Austria 10.15 20.45 45.80 177 3.8 13.26 2772 132.22
Belgium 10.14  20.19 45.02 1.73 357 12.83 26.87 12720
Bermuda 1027 2030 45.26 1.79 370 14.64 3049 146.37
Brazil 10.00 19.89 44.29 1.70 3.57 1348 28.13 126.05
Canada 9.84  20.17 44.72 1.75 353 1323 27.60 130.09
Chile 1010  20.15 4592 1.76 365 13.39 28.09 132.19
China 1017 2042 45.25 1.77 361 1342 28.17 129.18
Columbia 10.29  20.85 45.84 1.80 372 13.49 27.88 131.17
Cook Islands 1097 2246 51.40 1.94 424 16.70 3538 171.26
Costa Rica 1032 2096 46.42 1.87 3.84 13.75 28.81 133.23
Czech Republic 10.24  20.61 45.77 1.75 3.58 13.42 27.80 131.57
Denmark 1029  20.52 45.89 1.69 3.52 13.42 2791 129.43
DominicanRepublic 1016 2065 4490 1.81 373 1431 3043 146.00
Finland 10.21 20.47 45.49 1.74 3.61 13.27 27.52 131.15
France 10.02  20.16 44.64 1.72 348 12.98 27.38 126.36
Germany 10.06 20.23 44.33 1.73 353 1291 27.36 128.47
Great Britain 987 1994 44 36 1.70 349 13.01 27.30 127.13
Greece 10.11 19.85 4557 1.75 3.61 13.48 28.12 132.04
Guatemala 1032 21.09 48.44 1.82 374 13.98 " 2934 132.53
Hungary 10.08 20.11 45.43 1.76 359 13.45 28.03 132.10
India 1033 20.73 4548 1.76 363 13.50 28.81 132.00
Indonesia 10.20 2093 46.37 1.83 3.77 14.21 2965 139.18
Ireland 10.35  20.54 45.58 1.75 3.56 13.07 27.78 129.15
Israel 1020  20.89 46.59 1.80 3.70 13.66 2872 134.21
Italy 10.01 19.72 45.26 1.73 3.35 13.09 2728 127.29
Japan 10.00 20.03 4478 1.77 3.62 13.22 27.58 126.16
Kenya 10.28 2043 44.18 1.70 3.44 12.66 26.46 124.55
Korea, South 1034 2041 4537 1.74 364 13.84 28.51 127.20
Korea, North 10.60 21.23 46.95 1.82 3.77 13.90 2845 129.26
Luxembourg 10.41 20.77 47.90 1.76 3.67 13.64 28.77 134.03
Malaysia 10.30 2092 46.41 1.79 3.76 14.11 29.50 149.27
Mauritius 1013 2006 44.69 1.80 383 14.15 29.84 143.07
Mexico 10.21 20.40 4431 1.78 3.63 13.13 27.14 127.19
Myanmar(Burma) 1064 2152 4863 1.80 3.80 14.19 29.62 139.57
Netherlands 1019  20.19 45.68 1.73 3.55 13.22 2744 128.31
New Zealand 1011 2042 46.09 1.74 3.54 1321 27.70 128.59
Norway 10.08 20.17 46.11 1.71 3.62 13.11 27.54 130.17
Papua New Guinea 1040 2118 46.77 1.80 400 14.72 31.36 148.13
Philippines 10.57 21.43 45.57 1.80 382 13.97 29.04 138.44
Poland 10.00 1998 44.62 1.72 3.59 13.29 27.89 129.23
Portugal 9.86 2012 46.11 1.75 3.50 13.05 27.21 126.36
Romania 1021 2075 45.77 1.76 3.57 13.25, 27.67 132.30
Russia 10:11 20.23 44.60 171 3.54 13.20 27.90 129.16
Samoa 10.78  21.86 49.98 1.94 4.01 16.28 34.71 161.50
Singapore 10.37 21.14 47.60 1.84 3.86 14.96 31.32 144.22
Spain 10.17 20.59 44.96 1.73 3.48 13.04 27.24 127.23
Sweden 10.18 20.43 45.54 1.76 3.61 13.29 27.93 130.38
Switzerland 10.16 2041 44.99 1.71 3.53 13.13 27.90 129.56
Taiwan 1036  20.81 46.72 1.79 3.77 13.91 29.20 134.35
Thailand 10.23  20.69 46.05 1.81 3.77 14.25 29.67 139.33
Turkey 10.38 21.04 46.63 1.78 3.59 13.45 28.33 130.25
US.A. 978 1932 4318 1.71 3.46 12.97 27.23 125.38

Source: IAAF/ATES Track and Field Statistics Handbook for the Helsinki 2005 Olympics. Courtesy of Ofttavio Castellini.
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8.23.

8.24.

8.25.

8.26.

8.27.

A naturalist for the Alaska Fish and Game Department studies grizzly bears with the
goal of maintaining a healthy population. Measurements on n = 61 bears provided

. o he':
following summary statistics: x

Variable Weight Body Neck Girth Head Head B
(kg) length (cm) (cm) length width #
(cm) (cm) (cm) B
Sample |
mean X 95.52 164.38 55.69 93.39 17.98 31.13

Cavariance matrix

3266.46 134397 731.54 117550 162.68 238.37
1343.97 721.91 32425 53735 80.17 117.73
731.54 32425 17928 281.17 39.15 56.80
1175.50 53735 28117 47498 63.73 94.85
162.68 80.17 39.15 63.73 9.95 1388
238.37 11773  56.80 94.85 13.88 21.26

S =

(a) Perform a principal compenent analysis using the covariance matrix. Can the data
be effectively summarized in fewer than six dimensions?

(b) Perform a principal component analysis using the correlation matrix.

(c) Comment on the similarities and differences between the two analyses.

Refer to Example 8.10 and the data in Table 5.8, page 240. Add the variable x¢ = regular
overtime hours whose values are (read across)

6187 7336 6988 6964 8425 6778 5922 7307
7679 8259 10954 9353 6291 4969 4825 6019

and redo Example 8.10.

Refer to the police avertime hours data in Example 8.10. Construct an alternate control
chart, based on the sum of squares d% j» tomonitor the unexplained variation in the orig-
inal abservations summarized by the additional principal components.

Consider the psychological profile data in Table 4.6. Using the five variables, Indep, Supp,

Benev, Conform and Leader, performs a principal component analysis using the covari-

ance matrix S and the correlation matrix R. Your analysis should include the following:

(a) Determine the appropriate number of components ta effectively summarize the
variability. Construct a scree plot to aid in your determination.

(b) Interpret the sample principal components.

(c) Using the values for the first two principal components, plot the data in a two-
dimensional space with y; along the vertical axis and y, along the horizontal axis.
Can you distinguish groups representing the two sociceconomic levels and/or the
two genders? Are there any outliers?

(d) Construct a 95% confidence interval for A,, the variance of the first population
principal component from the covariance matrix.

The pulp and paper properties data is given in Table 7.7. Using the four paper variables,

BL (breaking length), EM (elastic modulus), SF (Stress at failure) and BS (burst:

strength), perform a principal component analysis using the covariance matrix S and t

correlation matrix R. Your analysis should include the following:

(2) Determine the appropriate number of components to effectively summarize the
variability. Construct a scree plot to aid in your determination. 5
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(b) Interpret the sample principal components.

(c) Do you think it it is possible to develop a “paper strength” index that effectively con-
tains the information in the four paper variables? Explain.

(d) Using the values for the first two principal components, plot the data in a two-
dimensional space with ¥, along the vertical axis and ), along the horizontal axis.
Identify any outliers in this data set.

8.28. Survey data were collected as part of a study to assess options for enhancing food secu-
rity through the sustainable use of natural resources in the Sikasso region of Mali (West
Africa). A total of n = 76 farmers were surveyed and observations on the nine variables

x, = Family (total number of individuals in household)

x; = DistRd (distance in kilometers to nearest passable road)

x3 = Cotton (hectares of cotton planted in year 2000)
x4 = Maize (hectares of maize planted in year 2000)
xs = Sorg (hectares of sorghum planted in year 2000)
x¢ = Millet (hectares of millet planted in year 2000)
x7 = Bull (total number of bullocks ar draft animals)

Cattle (total); xg = Goats (total)

I

xg

were recorded. The data are listed in Table 8.7 and on the website www.prenhall.com/statistics

(a) Construct two-dimensional scatterplots of Family versus DistRd, and DistRd versus
Cattle. Remove any obvious outliers from the data set.

| Table 8.7 Mali Family Farm Data ]
Family DistRD Cotton Maize Sorg Millet Bull Caitle Goats
12 80 1.5 1.00 30 .25 2 0 1
54 8 6.0 4.00 0 1.00 6 32 5
1 13 5 1.00 0 0 0 0 0
21 13 20 2.50 1.0 0 1 0 5
61 30 3.0 5.00 0 0 4 21 0
20 70 0 2.00 3.0 0 2 0 3
29 35 1.5 2.00 0 0 0 0 0
29 35 2.0 3.00 2.0 0 0 0 0
57 9 50 5.00 0 0 4 5 2
23 33 20 2.00 1.0 0 2 1 7
20 0 1.5 1.00 30 0 1 6 0
27 41 1.1 25 1.5 1.50 0 3 1
18 500 20 1.00 1.5 .50 1 0 0
30 19 2.0 2.00 40 1.00 2 0 5
77 18 80 4.00 6.0 4.00 6 8 6
21 500 5.0 1.00 3.0 4.00 1 0 5
13 100 5 .50 0 1.00 0 0 4
24 100 20 3.00 0 .50 3 14 10
29 90 20 1.50 1.5 1.50 2 0 2
57 90 10.0 7.00 0 1.50 7 8 7

0

\_ Source: Data courtesy of Jay Angerer.
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8.29.

(b) Perform a principal component analysis using the correlation matrix R. Determipe -
the number of components to effectively summarize the variability. Use the PrOpor.
tion of variation explained and a scree plot to aid in your determination,

(c) Interpret the first five principal components. Can you identify, for example, a “fann
size™ component? A, perhaps, “goats and distance to road” component?

Refer to Exercise 5.28. Using the covariance matrix § for the first 30 cases of car bod

assembly data, obtain the sample principal components.

(a) Construct a 95% ellipse format chart using the first two principal components 3, and
2. Tdentify the car locations that appear to be out of control. :

(b) Construct an alternative control chart, based on the sum of squares d} ; 1o momtor
the variation in the original observatlons summarized by the remaining four princj. -
pal components. Interpret this chart.

4 i
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